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RANDOMIZED DISCRETE EMPIRICAL INTERPOLATION
METHOD FOR NONLINEAR MODEL REDUCTION\ast 
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Abstract. The discrete empirical interpolation method (DEIM) is a popular technique for
nonlinear model reduction, and it has two main ingredients: an interpolating basis that is computed
from a collection of snapshots of the solution, and a set of indices which determine the nonlinear
components to be simulated. The computation of these two ingredients dominates the overall cost of
the DEIM algorithm. To specifically address these two issues, we present randomized versions of the
DEIM algorithm. There are three main contributions of this paper. First, we use randomized range
finding algorithms to efficiently find an approximate DEIM basis. Second, we develop randomized
subset selection tools, based on leverage scores, to efficiently select the nonlinear components. Third,
we develop several theoretical results that quantify the accuracy of the randomization on the DEIM
approximation. We also present numerical experiments that demonstrate the benefits of the proposed
algorithms.
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subset selection, subspace iteration
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1. Introduction. Detailed mathematical models of weather prediction and neu-
roscience routinely generate large-scale problems having over a billion unknowns. The
goal of model reduction is to replace computationally expensive full-scale models by
reduced order models (ROMs) that are cheaper to evaluate and that preserve the im-
portant underlying physics in the full-scale models. Development of effective ROMs
will enable efficient and accurate simulation of a wide range of detailed complex phys-
ical phenomena as well as benefit a host of applications in inverse problems, data
assimilation, design, control, optimization, and uncertainty quantification.

In a typical model reduction technique, there are two distinct phases: an offline
phase in which the full model is simulated for a range of parameters or specifications
and the outputs of this simulations are used to construct the ROM, and an online
phase, in which the ROM is simulated for the desired parameter, or specification. A
successful ROM has two features that are hard to achieve simultaneously: the ROM
should be accurate over the desired range of parameters and specifications, and the
online phase should be inexpensive---the dominant computational cost should be in
the offline phase. A popular method for model reduction is proper orthogonal decom-
position (POD), which has been successfully used in a wide range of partial differential
equation (PDE)-based applications, and is reviewed in subsection 2.1. While the POD
approach has broad applicability, the computational efficiency of POD demands that
the underlying PDE has to be linear, or the parameter dependence has to be of a spe-
cific type, e.g., affine parameter dependence. To address this deficiency, many methods
have been proposed in the literature such as the gappy POD interpolation method,
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RANDOMIZED DISCRETE EMPIRICAL INTERPOLATION METHOD A1583

the empirical interpolation method (EIM), and its discrete variant, the discrete em-
pirical interpolation method (DEIM). Reviews of various model reduction techniques
are provided in the survey paper [3] and in recent books and monographs [17, 25].

The DEIM interpolation framework computes an approximation of a nonlinear
function f : Rn \rightarrow Rn by the means of a basis W \in Rn\times r used to interpolate the
function, and a set of indices, defining a point selection operator S \in Rn\times r, at which
the nonlinear function is evaluated. In subsection 2.2, we explain how W and S can
be used to approximate the function f ; here, we describe the major bottlenecks in
computing the DEIM approximation.

\bullet The basis W is constructed as follows: several representative samples---also
called snapshots---of the function f(\cdot ) are collected and arranged as columns
of a matrix, known as the snapshot matrix. The left singular vectors of
this snapshot matrix form the desired DEIM basis---henceforth, we call this
the standard basis. The dimension of the subspace spanned by the DEIM
basis, denoted by r, depends on the number of dominant singular values of
the snapshot matrix. Computing a truncated singular value decomposition
(SVD) costs \scrO (rnsn), where ns is the number of snapshots; our approach
replaces the SVD by a randomized SVD.
\bullet Finding a set of good indices is a combinatorially hard problem known as sub-

set selection (in the DEIM literature, this is known as point selection, which
we also adopt in this manuscript). Various deterministic subset selection tech-
niques have been proposed in the literature: these are based on pivoted LU
factorization [7, 28], pivoted QR factorization [9], and strong rank-revealing
QR factorization [10]. The computational cost is roughly \scrO (nr2); we use ran-
domized subset selection techniques, which lowers this cost and can exploit
parallelism.

Both of these operations are computationally expensive when n is large. Our
paper specifically addresses these computational challenges using randomized algo-
rithms, thereby enabling efficient large-scale implementation of DEIM.

To motivate the development of a randomized algorithm for DEIM, we briefly re-
view randomized algorithms in other applications. Recently, randomized algorithms
have been developed for accurate low-rank approximations to matrices arising from
large datasets. The basic idea of these methods is to use random sampling to identify
a subspace which approximately captures the range of the matrix [16]. The matrix is
then projected onto this subspace, and then deterministic linear algebraic techniques
can be used to manipulate the projected matrix to obtain the desired low-rank ap-
proximation. In addition to low-rank approximations, randomized methods (based
on leverage score sampling and other subset selection techniques) have been devel-
oped for other linear algebraic problems such as least squares problems, regression,
and computation of interpretable decompositions such as CX/CUR decompositions;
see recent survey articles [20, 8]. Randomized methods have several advantages over
their corresponding classical counterparts: typically, they are computationally effi-
cient, numerically robust, and easy to implement, and they scale well in a distributed
computing setting and have well-developed error analysis.

Contributions and contents. We present randomized algorithms for DEIM that
enable nonlinear dimensionality reduction for several large-scale applications.

We present randomized approaches (section 3) for efficient construction of a DEIM

basis \widehat W . The algorithms come in two flavors depending on whether the target rank
r is known or not. When the target rank is known, we present a basic version and
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A1584 ARVIND K. SAIBABA

a more accurate version based on subspace iteration. When the target rank r is
unknown, we provide an adaptive algorithm for computing \widehat W . The computational
and storage advantages of the randomized algorithms for constructing the DEIM basis
are highlighted.

We present a detailed analysis of the error (section 4) that occurs when a ran-
domized basis is used instead of the standard DEIM basis. A crucial component of
our analysis involves the largest canonical angle between the subspaces spanned by
the standard basis W and an approximate basis \widehat W . This analysis is applicable to
any approximate basis \widehat W , and therefore this has broad appeal beyond the context
of randomized algorithms. We also present specific results that explicitly account for
the randomness on the accuracy of the DEIM approximation.

We propose two randomized point selection methods for DEIM approximation
(section 5): leverage score sampling and hybrid algorithms. For each method, we
present theoretical bounds on the number of points required for the desired accu-
racy. The hybrid point selection technique combines the computational advantages
of the randomized methods with the accuracy of deterministic methods. These sam-
pling methods have been proposed in the context of matrix CUR decompositions; our
analysis for the DEIM approximation is new.

Numerical experiments (section 6) demonstrate the computational benefits, the
accuracy of the randomized approaches, and insight into the choice of parameters for
various algorithms presented in this paper.

Related work. The idea of using randomization to accelerate computations in
model reduction appears to be relatively new, and here we briefly review the literature.
Randomized matrix methods similar to the ones used in this paper have been used
to approximate POD [33, 34, 2] and dynamic mode decomposition [12, 11, 4]. Recent
work in [1] uses randomization for reducing the cost associated with multiple right-
hand sides in nonlinear model reduction. The resulting ROM dramatically reduces
the cost of solving a PDE-based inverse problem. However, none of these references
directly tackle the DEIM approximation, which is the central focus of this paper.
Randomized sampling approaches for choosing the DEIM indices have been proposed
in [9], but no analysis of the randomization was presented. Another noteworthy
paper [23] uses randomized oversampling to address stability issues with DEIM.

2. Preliminaries. We briefly review the POD and DEIM approaches for model
order reduction.

2.1. Proper orthogonal decomposition. We explain the POD approach in
the context of a nonlinear dynamical system that takes the form

(2.1)
dx(t)

dt
=Mx(t) + f(x(t)), x(0) = x0,

where M \in Rn\times n. When n is large, the simulation of the dynamical system can be
computationally expensive, and we turn to ROMs to lower the computational cost.
In the POD approach, the dynamical system is first simulated numerically, and the
``snapshots"" of the system at multiple times 0 \leq t1 < \cdot \cdot \cdot < tnt

\leq T , as xj = x(tj) for
j = 1, . . . , nt, are collected into the POD snapshot matrix

F =
\bigl[ 
x1 . . . xnt

\bigr] 
\in Rn\times nt .

We then compute its thin SVD F = Y \Sigma Z\top . The POD approach chooses the k \leq \rho =
\sansr \sansa \sansn \sansk (F ) singular vectors corresponding to the largest singular values, collected in a
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RANDOMIZED DISCRETE EMPIRICAL INTERPOLATION METHOD A1585

matrix Vk = Y (:, 1 : k) (using MATLAB notation). The basis, thus obtained, also
solves the following optimization problem:

(2.2) min
V \in Rn\times k:V \top V=Ik

\| (In  - V V \top )F\| 2F =

nt\sum 
j=k+1

\sigma 2
j (F ),

where \sigma j(F ) are the singular values of F . The choice of snapshots is an important issue
in determining an effective POD basis and is discussed in [25, 3, 17]. Assuming that
we have an effective basis Vk, the solution x(t) can be approximated to be constrained
in the span of the basis of the columns of Vk, i.e., x(t) \approx Vk\widehat x(t). Next, the reduced
system is obtained by a Galerkin projection onto \scrR (Vk); the dynamics of \widehat x(t) is given
by

d\widehat x(t)
dt

= V \top 
k MVk\widehat x(t) + V \top 

k f(Vk\widehat x(t)), \widehat x(t) = V \top 
k x0.

This approach, known as the POD-Galerkin method, is an effective way of reducing
the dimensionality of the system of equations represented in (2.1). This approach is
more generally applicable to other applications such as parameterized PDEs.

We briefly discuss the computational cost of the POD-Galerkin approach. Note
that the matrix \widehat M \equiv V \top 

k MVk can be precomputed. If the nonlinear term f = 0, then
the cost of simulating the reduced system for \widehat x(t) is independent of n, the dimension
of the full order system. However, the evaluation of the nonlinear term V \top 

k f(Vk\widehat x(t))
has computational complexity that depends on n. As a result, evaluation of this term
may still be as expensive as solving the original system.

2.2. DEIM approximation. The DEIM approximation was proposed to ad-
dress the deficiency of the POD-Galerkin approach for nonlinear dynamical systems.
Given a collection of snapshots of the full order dynamical system

A =
\bigl[ 
f(x1) . . . f(xns

)
\bigr] 
,

a projection basis is computed by retaining the r left-singular vectors corresponding
to the top-r singular values. We denote this standard DEIM basis by W \in Rn\times r.
The DEIM approach then selects s distinct rows from the matrix W ; in particular,
denoting the row indices \{ t1, . . . , ts\} , we define the selection operator

S =
\bigl[ 
et1 \cdot \cdot \cdot ets

\bigr] 
\in Rn\times s,

where eti is the tith column of the n\times n identity matrix.
We define the DEIM projector D \equiv W (S\top W )\dagger S\top that satisfies D2 = D (i.e., D

is idempotent) and if D \not = 0 and D \not = In, then

(2.3) \| D\| 2 = \| In  - D\| 2.

The equality follows from the property of oblique projectors [30]. Since S and W
have orthonormal columns and \| \cdot \| 2 is unitarily invariant, we also have the equality
\| D\| 2 = \| (S\top W )\dagger \| 2. Given the DEIM projector, the DEIM approximation of f can
be expressed as

(2.4) \widehat fDEIM \equiv Df.

We recapitulate a few properties of the DEIM projector that will be useful in
subsequent analysis. Let PW \equiv WW\top and PS = SS\top be two orthogonal projec-
tors corresponding to the bases W and S, respectively. Suppose that \sansr \sansa \sansn \sansk (D) =
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A1586 ARVIND K. SAIBABA

\sansr \sansa \sansn \sansk (S\top W ) = r = s. The following relations hold:

D = DPS = PWD,(2.5)

DPW = PW , In  - D =(In  - D)(In  - PW ),(2.6)

PSD = PS , In  - D =(In  - PS)(In  - D).(2.7)

Remark 1. In the original DEIM approach [7], the number of selected indices s
equals the dimension of the DEIM basis r. The case s \not = r has its origins in gappy POD
(see [25, Remark 10.4] and references therein). The implications for the interpolation
and projection properties of the DEIM operator have been discussed in detail in [10,
section 3]. Of importance in our analysis will be the case s \geq r and \sansr \sansa \sansn \sansk (D) = r. In
this case, (2.5) and (2.6) hold, but (2.7) no longer holds; see [10, section 3].

We also have the following error in the DEIM approximation.

Lemma 2.1. Let the DEIM approximation be defined in (2.4), and let \sansr \sansa \sansn \sansk (D) =
\sansr \sansa \sansn \sansk (S\top W ) = r with s \geq r:

\| f  - \widehat fDEIM\| 2 \leq \| D\| 2\| (In  - WW\top )f\| 2.

Proof. See [7, Lemma 3.2].

Remark 2. The error in the function approximation \| (In  - WW\top )f\| 2 depends
on the quality of the basis W ; a priori bounds for this term are difficult to derive. In
this work, we make the rather strong assumption that \| (In  - WW\top )f\| 2 \approx \sigma r+1(A)
(see [25, equation (10.20)] and the discussion surrounding it for a justification). That
is, the error depends on the largest discarded singular value of the snapshot matrix.

The quantity \| D\| 2 can be interpreted as the condition number of the DEIM
approximation. In what follows, we also refer to it as the DEIM error constant, and
it depends on the particular point selection technique that is used. A discussion
of this is provided in section 5. When S and W have orthonormal columns and
\sansr \sansa \sansn \sansk (S\top W ) = r, then \| D\| 2 = \| (S\top W )\dagger \| 2.

It remains to be shown how to use the DEIM approximation along with the POD.
Suppose that the DEIM basis W and the selection operator S have been determined.
In the dimension-reduced version of the nonlinear dynamical system, replace f by\widehat fDEIM, i.e.,

V \top 
k f(Vk\widehat x(t)) \approx (V \top 

k W )(S\top W )\dagger S\top f(Vk\widehat x(t)).
In the offline stage, the matrices (V \top 

k W ) and a factorization of S\top W can be precom-
puted. This involves a computational cost of \scrO (nkr+r3). In the online stage, instead
of evaluating the nonlinear function, only an s \geq r selected number of components
of the function will be evaluated at the indices that determine the columns of the
selection operator S.

The computation of a standard DEIM basis W and the interpolating indices that
define S constitute the major bottlenecks in the large-scale implementation of DEIM.
In section 3, we develop randomized algorithms to accelerate the computation of the
basis W , and in section 5, we develop efficient randomized point selection algorithms.

3. Randomized algorithm for DEIM basis. Let A \in Rn\times ns with n \geq ns
and r \leq \sansr \sansa \sansn \sansk (A) be the matrix of snapshots. We can write the SVD of A as

A =
\bigl[ 
W1 W2

\bigr] \biggl[ \Sigma 1

\Sigma 2

\biggr] \biggl[ 
Z\top 
1

Z\top 
2

\biggr] 
.
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RANDOMIZED DISCRETE EMPIRICAL INTERPOLATION METHOD A1587

Here W1 \in Rn\times r and W2 \in Rn\times (n - r) contain the left-singular vectors, whereas Z1 \in 
Rns\times r and Z2 \in Rns\times (ns - r) contain the right-singular vectors. The matrices \Sigma 1 =
\sansd \sansi \sansa \sansg (\sigma 1, . . . , \sigma r) \in Rr\times r and \Sigma 2 = \sansd \sansi \sansa \sansg (\sigma r+1, . . . , \sigma ns

) \in R(n - r)\times (ns - r) contain the
singular values of A in decreasing order. Furthermore, \| \Sigma  - 1

1 \| 2 = 1/\sigma r and \| \Sigma 2\| 2 =
\sigma r+1. Write A = Ar +Ar,\bot , where, by the Eckart--Young theorem, Ar \equiv W1\Sigma 1Z

\top 
1 is

the best rank-r approximation to A [29, section 4.5].
The standard DEIM approximation uses W = W1. The randomized DEIM ap-

proximation replaces the exact SVD with a randomized SVD. Here and henceforth,
we refer to the basis generated using a randomized algorithm as the R-DEIM basis,
and the resulting approximation as the R-DEIM approximation.

3.1. Randomized SVD. We briefly review an idealized version of the random-
ized range finding algorithm. Suppose the target rank is known and denoted by r.
Draw a standard Gaussian random matrix \Omega \in Rn\times r (i.e., a matrix with entries inde-
pendent and identically distributed normal variables having mean 0 and variance 1).
Form the matrix Y = A\Omega (which is often called the ``sketch matrix"" or ``sketch""), and
compute an orthonormal basis for \scrR (Y ) using the thin QR factorization Y = QR.
In practice, instead of r columns, \ell = r + p columns are drawn; here p > 0 is a
small oversampling parameter. A low-rank approximation to A can be obtained as
A \approx Q(Q\top A). Compute the top r left-singular vectors of B \equiv Q\top A by Wr, and

obtain the approximate basis as \widehat W = QWr. This is summarized in Algorithm 1.

Input: Snapshot matrix A \in Rn\times ns , target rank r, oversampling parameter
p \geq 1 such that r + p \leq min\{ n, ns\} .

Output: Basis \widehat W with orthonormal columns.
1 Draw a standard Gaussian matrix \Omega \in Rns\times (r+p).
2 Form Y = A\Omega and compute thin QR factorization Y = QR.

3 Form B = Q\top A. Let Wr be the left-singular vectors corresponding to top r
singular values of B.

4 Form \widehat W \leftarrow QWr.

Algorithm 1: Basic randomized range finding algorithm.

The error in the low-rank approximation can be obtained by [16, Theorem 10.6]
(when p \geq 2 and n \geq ns):

E\Omega \| (In  - QQ\top )A\| 2 \leq 
\biggl( 
1 +

\sqrt{} 
r

p - 1

\biggr) 
\sigma r+1 +

e
\surd 
r + p

p

\left(  ns\sum 
j=r+1

\sigma 2
j

\right)  1/2

.

However, the error in the low-rank representation does not fully explain the error
in the R-DEIM approximation. As shown in section 4, we will need to bound the
canonical angles between the subspaces spanned by the singular vectors.

In practice, the target rank r may not be known in advance. In the standard
DEIM approach, the rank r is chosen based on the decay of the singular values of A.
However, the exact singular values are not known to us, and therefore a new approach
is needed. We use the approach in [35] that adaptively determines the target rank r.
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A1588 ARVIND K. SAIBABA

3.2. Adaptive randomized range finder. In the standard DEIM approach,
the truncation index is taken to be the smallest index r which satisfies

\| A - Ar\| 2F
\| A\| 2F

=

\sum ns

j=r+1 \sigma 
2
j (A)\sum ns

j=1 \sigma 
2
j (A)

\leq \epsilon 2tol.

The matrix Ar was defined at the start of this section. This condition ensures that the
relative error of the low-rank representation, as measured in the Frobenius norm, is
smaller than a positive user-defined tolerance \epsilon tol. Based on this criterion, we require
the R-DEIM basis \widehat W to satisfy the condition

(3.1) \| A - \widehat W\widehat W\top A\| 2F \leq \epsilon 2tol\| A\| 2F .

Several adaptive randomized range finding algorithms were presented in the litera-
ture [16, 21, 35, 13]. In this paper, we adopt the approach presented in [35]. An
outline of this algorithm is given in Algorithm 2; however, we refer the reader to [35,
Algorithm 3] for details regarding the implementation. Another variation [35, Al-
gorithm 4] combines an adaptive strategy with the subspace iteration for enhanced
accuracy.

Input: Snapshot matrix A \in Rn\times ns , block size b \geq 1, tolerance \epsilon tol > 0,
factor \alpha .

Output: Basis \widehat W with orthonormal columns.
1 Compute \alpha = \| A\| 2F .
2 W \leftarrow [].

3 Parameter \beta = 0. // Norm of B = Q\top A.
4 while \beta \leq \alpha (1 - \epsilon 2tol) do
5 Draw a standard Gaussian matrix \Omega \in Rns\times b.
6 Compute Z = (A - WB)\Omega , and the thin QR factorization QR = Z.

7 Orthogonalize: Q\leftarrow (In  - WW\top )Q.

8 Compute B\prime = Q\top A - Q\top WB.

9 Extend W =
\bigl[ 
W Q

\bigr] 
and B =

\biggl[ 
B
B\prime 

\biggr] 
.

10 Update norm: \beta \leftarrow \beta + \| Q\top A\| 2F .
11 end

12 \widehat W \leftarrow W .

Algorithm 2: Adaptive randomized range finding algorithm [35].

3.3. Computational advantages. The standard DEIM approach computes
the compact SVD of the snapshot matrix; this is expensive and costs \scrO (nn2s) flops,
assuming that ns \leq n. On the other hand, the randomized approach only requires
\scrO (rnns) flops and is computationally advantageous when r \ll ns.

Besides this, there are several benefits of this approach that are worth pointing
out. First, the rank r need not be known a priori and is determined adaptively
(Algorithm 2). Second, the sketch Y = A\Omega can be computed by taking advantage
of the sequential nature of the snapshot generation. Third, the DEIM basis can be
efficiently updated. See below for more details regarding the last two points.
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RANDOMIZED DISCRETE EMPIRICAL INTERPOLATION METHOD A1589

3.3.1. Reduced storage costs. In model reduction techniques involving dy-
namical systems, the snapshots used to compute the DEIM basis are generated se-
quentially by a time-stepping method. When a fine-scale spatial discretization is used,
the number of degrees of freedom n can be large and the cost of storing many snap-
shots can be overwhelmingly, even prohibitively, large. We can take advantage of the
sequential nature of the snapshot generation to reduce storage costs.

Suppose that the target rank r is known in advance (for simplicity, we do not
include oversampling). The only step that involves manipulating the snapshots is the
computation of the sketch Y = A\Omega . Note that we can alternatively express this sum
of rank-1 outer products as

Y =

ns\sum 
j=1

A(:, j)\Omega (j, :).

Here A(:, j) are the columns of the snapshot matrix, and \Omega (j, :) are the rows of \Omega .
This formula means that once each snapshot A(:, j) is generated, the sketch can be
updated appropriately using A(:, j)\Omega (j, :), and then the snapshot can be discarded.
If the target rank r is much smaller than the number of snapshots ns, the storage
cost is lowered to \scrO (nr) instead of \scrO (nns), and these savings may be substantial. An
alternative option is maintaining two sets of sketches as advocated in [31].

3.3.2. Adapting the basis. Adapting the basis becomes necessary in certain
applications [24]; for example, in the offline stage, the snapshot matrix A may be
constructed with the objective of making the DEIM approximation accurate over the
entire parameter range, but computational considerations may constrain the approx-
imation to be accurate only over a certain region in parameter space. The DEIM
approximation may be used as a surrogate for the original function in an optimiza-
tion setting. As the optimization routine makes progress, the DEIM approximation
may not be accurate if the optimization path deviates from the region of accurate
DEIM approximation; in this case, a good strategy may be to update the DEIM basis
based on the optimization trajectory.

Randomized algorithms allow the user the flexibility to readily update the DEIM
basis by simply updating the sketch Y , instead of recomputing the SVD. Suppose
the jth column of the snapshot matrix needs to be replaced by aj ; we make the
assumption that the target rank r remains the same. The corresponding sketch can
be replaced as Y \leftarrow Y + (aj  - A(:, j))\Omega ; a thin QR can be performed to obtain the
basis, and the entire snapshot matrix is not necessary for adapting the basis. It is
easily seen how to simultaneously replace a block of columns.

3.4. Improved accuracy via subspace iteration. For some applications, the
decay in the singular values may not be rapid enough to ensure that the resulting
subspace computed \widehat W is accurate. The basic idea is to replace the sketch Y = A\Omega 
in Algorithm 1 with the sketch Y = (AA\top )qA\Omega . Essentially this means running q
steps of subspace iteration where q is a nonnegative integer. However, it is well known
that a direct computation of the sketch Y = (AA\top )qA\Omega is numerically unstable and
is significantly affected by round-off error. To address this issue, numerically stable
methods alternate the matrix-vector products involving A with a QR factorization.
Algorithm 3 gives an idealized version of the algorithm that will be suitable for analysis
in subsection 4.3. For more details on a numerically stable implementation, see [16,
26].
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A1590 ARVIND K. SAIBABA

Input: Snapshot matrix A \in Rn\times ns , target rank r, oversampling parameter
p \geq 1 such that r + p \leq min\{ n, ns\} , number of iterations q \geq 0.

Output: Basis \widehat W with orthonormal columns.
1 Draw a standard Gaussian matrix \Omega \in Rns\times (r+p).

2 Form Y = (AA\top )qA\Omega and compute thin QR factorization Y = QR.

3 Form B = Q\top A. Let W be the left-singular vectors of B and set
Wr =W (:, 1 : r).

4 Form \widehat W \leftarrow QWr.

Algorithm 3: Idealized randomized subspace iteration for range finding. Call
as [\widehat W ] = RandSubspace(A, r, p, q).

4. Error analysis. In subsection 4.2, we derive bounds for the accuracy of
the DEIM approximation, when a perturbed DEIM basis \widehat W is used instead of the
standard DEIM basis W . The bounds are applicable whether \widehat W is obtained using
a randomized algorithm or using any other approximation algorithm. For example,
due to the inexactness in the function evaluations, the snapshot matrix A may be
perturbed by \Delta A. In this case, the left-singular vectors \widehat W of A+\Delta A can be used as
the perturbed DEIM basis. The results in this subsection are applicable to this setting
as well. In subsection 4.3, we derive bounds for the angles between the subspaces
spanned by columns of W and \widehat W when \widehat W is obtained using the randomized range
finding algorithms. We then use these bounds to fully quantify the error in the R-
DEIM approximation.

4.1. Notation and canonical angles. Let W \in Rn\times r be the standard DEIM
basis, obtained from the first r left-singular vectors of A, and let S \in Rn\times s be the
selection operator. For generality, we will assume that the selection operator contains
columns from the identity matrix but may be scaled (see section 5 for examples). The
following orthogonal projectors will be of use in what follows:

PW \equiv WW\top , PS \equiv SS\dagger .

We note that (2.5) and (2.6) still hold if s \geq r and \sansr \sansa \sansn \sansk (S\top W ) = r, and all three
relations hold if s = r and \sansr \sansa \sansn \sansk (S\top W ) = r.

To distinguish from the standard DEIM basis, denote \widehat W \in Rn\times r as the ``per-
turbed"" basis (obtained, for example, from Algorithm 1) with orthonormal columns

and the corresponding selection operator \widehat S \in Rn\times s; assume that \sansr \sansa \sansn \sansk (\widehat S\top \widehat W ) = r.
Define the corresponding projectors

P\widehat W \equiv \widehat W\widehat W\top , P\widehat S = \widehat S \widehat S\dagger , \widehat D \equiv \widehat W (\widehat S\top \widehat W )\dagger \widehat S\top .

We allow for the possibility that the selection operator \widehat S and S may be different; these
may be computed based on the perturbed DEIM basis \widehat W and the standard DEIM
basis W , respectively. Throughout this section, we assume that the DEIM projectors
D, \widehat D do not equal either the zero matrix or the identity matrix.

The analysis of the error in the DEIM approximation requires computing the
overlap between two subspaces of Rn which, in turn, can be described in terms of
canonical angles. We now briefly review some definitions and properties of canonical
angles; see [29, Chapter I.5]. Denote the range spaces of W and \widehat W by \scrW and \widehat \scrW ,
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respectively; both these subspaces have dimension r. The principal or canonical angles
between \scrW and \widehat \scrW are \theta 1, . . . , \theta r = \theta max and satisfy

0 \leq \theta 1 \leq \cdot \cdot \cdot \leq \theta max \leq \pi /2.

The canonical angles can be computed using the SVD. Denote the singular values \sigma 1 \geq 
\cdot \cdot \cdot \geq \sigma r of W\top \widehat W ; then the canonical angles are \theta i = arccos(\sigma i), and furthermore,

(4.1) sin \theta max = \| PW  - P\widehat W \| 2 = \| (In  - PW )P\widehat W \| 2 = \| (In  - P\widehat W )PW \| 2.

Similarly, let \psi max denote the largest canonical angle between the pair of subspaces
\scrR (S) and \scrR (\widehat S). Equalities analogous to (4.1) also hold for \psi max.

4.2. DEIM approximation. We present two theorems that quantify the error
in the perturbed DEIM approximation. We use the notation that was established
in subsection 4.1. We remind the reader that both the basis \widehat W and the selection
operator \widehat S may be different than the standard DEIM basis W and selection operator
S, respectively.

Theorem 4.1. Let \widehat Df be the perturbed DEIM approximation to Df , and assume
that s \geq r and \sansr \sansa \sansn \sansk (\widehat D) = r. The approximation error satisfies

\| f  - \widehat Df\| 2 \leq \| \widehat D\| 2 (\| (In  - PW )f\| 2 + sin \theta max\| PW f\| 2) .

Proof. From the expression f  - \widehat Df = (In  - \widehat D)(PW + In  - PW )f and by the
triangle inequality

\| f  - \widehat Df\| 2 \leq \| (In  - \widehat D)PW f\| 2 + \| (In  - \widehat D)(In  - PW )f\| 2.

Recall that since s \geq r and \sansr \sansa \sansn \sansk (\widehat D) = \sansr \sansa \sansn \sansk (\widehat S\top \widehat W ) = r, therefore In  - \widehat D = (In  - \widehat D)(In - P\widehat W ). By assumption \widehat D \not = 0 and \widehat D \not = In, and therefore, by (2.3), \| In - \widehat D\| 2 =

\| \widehat D\| 2. Using these identities, we get

\| f  - \widehat Df\| 2 \leq \| \widehat D\| 2 \bigl( \| (In  - P\widehat W )PW f\| 2 + \| (In  - PW )f\| 2
\bigr) 
.

Use submultiplicativity

\| (In  - P\widehat W )PW f\| 2 \leq \| (In  - P\widehat W )PW \| 2\| PW f\| 2 = sin \theta max\| PW f\| 2,

and plug this into the previous equation to obtain the advertised result.

The first term is similar to the error in the DEIM approximation Lemma 2.1. The
second term is the additional error introduced by using the perturbed DEIM basis \widehat W
and is quantified by the sine of the largest canonical angle between the subspaces \scrW 
and \widehat \scrW ---if these subspaces are identical, and if S equals \widehat S, then the error reduces to
the standard DEIM approximation.

It is worth comparing this error bound with that of the standard DEIM approx-
imation Lemma 2.1. A little bit of algebra reveals that (if PW f \not = 0)

\| f  - \widehat Df\| 2 \leq \kappa \| (In  - PW )f\| 2,

where \kappa is an amplification factor, and

\kappa =

\biggl( 
1 +

sin \theta max

\| (In  - PW )f\| 2/\| PW f\| 2

\biggr) 
\| \widehat D\| 2.
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An important distinction between the original DEIM result and Theorem 4.1 is that
the condition number now appears to explicitly depend on the function f .

A different proof technique leads to a qualitatively different bound that includes
both angles \theta max and \psi max. It requires the additional assumption that the number of
selected indices s equals the dimension of the DEIM basis r.

Theorem 4.2. Let \widehat Df be the perturbed DEIM approximation to Df . Assume that
s = r and \sansr \sansa \sansn \sansk (D) = \sansr \sansa \sansn \sansk (\widehat D) = r. Then, the approximation error is

\| f  - \widehat Df\| 2 \leq \| D\| 2\| (In  - PW )f\| 2
+ \| D\| 2\| \widehat D\| 2 (sin\psi max\| (In  - PW )f\| 2 + sin \theta max\| PSf\| 2) .

(4.2)

Proof. The proof uses the decomposition

In  - \widehat D = In  - D+ (In  - \widehat D)D - \widehat D(In  - D).

Applying the triangle inequality results in

\| (In  - \widehat D)f\| 2 \leq \| (In  - D)f\| 2 + \| (In  - \widehat D)Df\| 2 + \| \widehat D(In  - D)f\| 2.

The first term is the standard DEIM error and is bounded by \| D\| 2\| (In  - PW )f\| 2.
For the subsequent terms, using the analogues of (2.5)--(2.7), we have the equalities

(In  - \widehat D)D = (In  - \widehat D)(In  - P\widehat W )PWDPS ,\widehat D(In  - D) = \widehat DP\widehat S(In  - PS)(In  - D)(In  - PW ).

Therefore, with repeated application of the submultiplicativity inequality

\| (In  - \widehat D)Df\| 2 = \| (In  - \widehat D)(In  - P\widehat W )PWDPSf\| 2 \leq sin \theta max\| In  - \widehat D\| 2\| D\| 2\| PSf\| 2.

The identity (2.3), along with the assumption \widehat D \not = 0 and \widehat D \not = In, completes the
second term. The last term is obtained in a similar manner.

The interpretation of this theorem is similar to that of Theorem 4.1. If \scrR (S) =
\scrR (\widehat S) and \scrR (W ) = \scrR (\widehat W ), then the two trailing terms drop out, and we are left

with the DEIM error Lemma 2.1. If \scrW = \widehat \scrW but \scrR (S) \not = \scrR (\widehat S), then sin \theta max = 0.

Conversely, if \scrW \not = \widehat \scrW but \scrR (S) = \scrR (\widehat S), then sin\psi max = 0.
Which bound is better? Our analysis in Theorem 4.2, which uses the perturbation

results of oblique projectors, it is likely to be suboptimal. Note that in the second
expression, we have the multiplicative factor \| D\| 2\| \widehat D\| 2; since both terms are at least
1, this expression can be large and clearly undesirable. This is what we see in Figure 1.

Illustration of the bounds. This example is based on [9, Example 3.1]. Let

(4.3) f(t;\mu ) = 10 exp( - \mu t) (cos(4\mu t) + sin(4\mu t)) , 1 \leq t \leq 6, 0 \leq \mu \leq \pi .

The snapshot set is generated by taking n\mu = 100 evenly spaced values of \mu and
n = 10, 000 evenly spaced points in time. The thin SVD of this matrix is computed,
and the left singular vectors corresponding to the first 34 modes are used to define
W . We use Algorithm 2 to obtain a randomized basis \widehat W , and we use an oversampling
parameter p = 20. We consider two different target ranks r = 10, 20. To report the
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Fig. 1. Comparison of the R-DEIM error and the bounds in Theorem 4.1 (bound 1) and
Theorem 4.2 (bound 2). For comparison we also include the DEIM error and the bound Lemma 2.1.

error we define the vectors fj =
\bigl[ 
f(t1;\mu j) . . . f(tn;\mu j)

\bigr] \top 
for j = 1, . . . , n\mu , and

the relative error defined as

Rel Err(\mu j) \equiv 
\| fj  - Dfj\| 2
\| fj\| 2

, j = 1, . . . , n\mu .

The results of the comparison are provided in Figure 1. We also plot the bounds for
the DEIM approximation Lemma 2.1 and the R-DEIM approximation Theorem 4.1.
The point selection was done using the pivoted QR algorithm [9] (see subsection 4.4).
We see that the error using the R-DEIM approximation closely follows the error of
the DEIM algorithm. Although both the DEIM and the R-DEIM bounds overpredict
the error, we see that the bound for R-DEIM is in close agreement with the bound
for DEIM. We did not plot the bound from Theorem 4.2 because we did not find it
to be very accurate.

4.3. Accuracy of the subspaces. The previous subsection reveals that the
accuracy of R-DEIM depends on the largest canonical angle between the subspaces
\scrW and \widehat \scrW , respectively. In this subsection, we shed more light on the accuracy of this
quantity.

Assume that the snapshot matrix A, with singular vectors W =W1, is perturbed
to \widehat A. The perturbation may be either deterministic or random. Bounds for the
canonical angles can be obtained from results known in the literature as the ``sin
theta"" theorem. Below is one example of such a theorem.

Lemma 4.3. Let \widehat A \in Rm\times n be a perturbation of A \in Rm\times n such that \sigma r(A)  - 
\sigma r+1( \widehat A) > 0, and denote the left-singular vectors of \widehat A by \widehat W . Then

sin \theta max \leq 
max\{ \| (A - \widehat A) \widehat Z1\| 2, \| (A\top  - \widehat A\top )\widehat W1\| \} 

\sigma r  - \sigma r+1( \widehat A) .

Proof. This follows from [32, equation (4.15)].

For some applications it may also be more convenient to bound the numerator
with \| A - \widehat A\| 2.

When \widehat W is computed using Algorithm 3, these results can be made more precise.
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Theorem 4.4. Let \widehat W \in Rn\times r be the DEIM basis obtained using Algorithm 3, and
let p \geq 2. Assume that 1 \leq r < \sansr \sansa \sansn \sansk (A) and the singular value ratio \gamma = \sigma r+1/\sigma r < 1,
so that the subspace is well defined. Let the constant C be defined as

C \equiv 
\sqrt{} 

r

p - 1
+
e
\sqrt{} 
(r + p)(ns  - r)

p
.

Then

E sin \theta max \leq 
\gamma 2q+1C

1 - \gamma 
.

Proof. See [27, Theorem 4].

The interpretation of this theorem is that the largest canonical angle converges to
0 as the number of subspace iterations increases. More precisely, if we want sin \theta max

to be bounded, in expectation, by some positive parameter \varepsilon < 1, then the number
of iterations (depending on \varepsilon ) should satisfy

q\varepsilon \geq 
1

2

\biggl( 
log \varepsilon (1 - \gamma )/(\gamma C)

log \gamma 

\biggr) 
.

This result also shows that the accuracy of the R-DEIM approximation depends
on the singular value ratio \gamma ---the smaller this ratio, the more accurate the subspace.
When \gamma \approx 1 the bound in Theorem 4.4 is devastating, but this is to be anticipated
since this means that the subspace may be poorly defined.

4.4. Randomized DEIM basis with deterministic point selection. We
briefly review the various choices of the selection operator S and review the error
bounds associated with each choice. We refer to the condition number \| D\| 2 as the
DEIM error constant. We then show how to combine the R-DEIM basis with existing
point selection techniques.

In [7], a greedy approach (which we call the DEIM selection algorithm) was used
to determine the point selection indices. For this algorithm, the DEIM error constant
is bounded by \scrO (

\surd 
n)r. However, numerical experiments showed that the bound for

the DEIM error constant was pessimistic. Subsequent analysis in [28] improved this
bound to \scrO (

\surd 
nr2r) and constructed an explicit matrix for which this bound could be

attained asymptotically. They concluded that while the bound was large, numerical
experiments showed that the point selection algorithm worked quite well, in practice.
Recent work in [9] developed a different approach which used pivoted QR (PQR) on
W\top to obtain the selection operator S. As with the DEIM selection algorithm, the
error constant can be large and could be attained by specially constructed adversarial
cases. Numerical experiments suggest that the performance is comparable to the
DEIM selection algorithm and is often better. More recently, the authors in [10] used
the Gu--Eisenstat strong rank-revealing QR (sRRQR) algorithm [15] to obtain the
bound

\| D\| 2 \leq 
\sqrt{} 
1 + \eta 2r(n - r) \equiv DsRRQR,

where \eta \geq 1 is a user-specified parameter (the authors in [15] call this parameter
f). The DEIM error constant using sRRQR is significantly lower than that of the
DEIM selection algorithm or the PQR algorithm; see Table 1 for the corresponding
DEIM error constants. The cost of sRRQR is roughly \scrO (nr2) ignoring logarithmic
factors [15]. In numerical experiments, the performance of sRRQR is similar to that
of PQR; therefore, we use the latter in our experiments because of its lower compu-
tational cost.
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Input: Snapshot matrix A \in Rn\times ns , target rank r, oversampling parameter
p \geq 1, number of iterations q \geq 0. User-defined parameter \eta \geq 1.

Output: Basis \widehat W \in Rn\times r with orthonormal columns and selection operator\widehat S \in Rn\times r defining the R-DEIM projector \widehat D = \widehat W (\widehat S\top W )\dagger \widehat S\top .

1 Construct \widehat W as [\widehat W ] = RandSubspace(A, r, p, q).
2 Apply sRRQR algorithm with parameter \eta \geq 1 to obtain

\widehat W\top \bigl[ \Pi 1 \Pi 2

\bigr] 
= Q

\bigl[ 
R11 R12

\bigr] 
.

Set \widehat S = \Pi 1 \in Rn\times r.

Algorithm 4: Randomized DEIM approximation with sRRQR point selec-
tion.

Suppose the DEIM basis \widehat W is generated using the randomized algorithm Algo-
rithm 3. We can apply sRRQR to \widehat W\top to obtain

\widehat W\top \bigl[ \Pi 1 \Pi 2

\bigr] 
= Q

\bigl[ 
R11 R12

\bigr] 
.

Here
\bigl[ 
\Pi 1 \Pi 2

\bigr] 
\in Rn\times n is a permutation matrix, Q \in Rr\times r is orthogonal, and R11 \in 

Rr\times r is upper triangular with positive diagonals. The selection operator S is taken
to be \Pi 1 \in Rn\times r, which selects well-conditioned rows of \widehat W . This is summarized in
Algorithm 4. The following theorem analyzes the error in the resulting approximation.

Theorem 4.5. Let \widehat W and \widehat S be the outputs of Algorithm 4, and define the R-
DEIM approximation \widehat fR-DEIM = \widehat W (\widehat S\top \widehat W )\dagger \widehat S\top f.

With the assumptions and notation of Theorem 4.4, the expected error in the R-DEIM
approximation satisfies

E\Omega \| f  - \widehat fR-DEIM\| 2 \leq DsRRQR

\biggl( 
\| (In  - PW )f\| 2 +

\gamma 2q+1C

1 - \gamma 
\| PW f\| 2

\biggr) 
.

Proof. By [10, Lemma 2.1] we obtain \| \widehat D\| 2 = \| (\widehat S\top \widehat W ) - 1\| 2 \leq DsRRQR. This

ensures that \sansr \sansa \sansn \sansk (\widehat D) = \sansr \sansa \sansn \sansk (\widehat S\top \widehat W ) = r. The assumption 1 \leq r < \sansr \sansa \sansn \sansk (A) ensures\widehat D \not = 0 or \widehat D \not = In; therefore, we can apply Theorem 4.1 to obtain

\| f  - \widehat fR-DEIM\| 2 \leq DsRRQR (\| (I  - PW )f\| 2 + sin \theta max\| PW f\| 2) .

We apply the result from Theorem 4.4 to the above equation, which completes the
proof.

5. Randomized point selection. To the best of our knowledge, the best known
bounds for the DEIM error constant are obtained using the sRRQR algorithm; how-
ever, as mentioned earlier, the computational cost of the sRRQR algorithm can be
high and may be prohibitively expensive for applications of interest. To tackle this
computational challenge, sampling-based randomized approaches have been previ-
ously proposed [24, 9, 23].

The sampling approach for point selection randomly samples s \geq r indices from
the index set \{ 1, . . . , n\} , according to a prespecified discrete probability distribution,
to determine the selection operator S. The computational cost of point selection by
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sampling is \scrO (ns); in comparison, both the DEIM selection and PQR algorithms cost
\scrO (nr2). Sampling-based techniques are readily parallelizable and therefore advan-
tageous for large-scale problems. There are two competing issues to consider when
deciding between sampling strategies: the DEIM error constant and the number of
required samples. A low DEIM error constant is desirable but may require many sam-
ples s, which increases the computational cost. An example of a sampling strategy is
uniform sampling, either with or without replacement. When the DEIM basis W has
high coherence (for a definition, see (5.1) and the discussion below it), the number of
samples required s can be large to ensure a small DEIM error constant. Therefore,
we do not use uniform sampling for the point selection. See [19] for additional discus-
sion on the effect of coherence on sampling from matrices with orthonormal columns.
In this section, we propose randomized algorithms for the selection operator S and
develop bounds for the proposed selection operators.

We propose two different randomized point selection techniques. The first method
is based on leverage scores (see (5.1) for a definition). While the point selection
stage is computationally efficient, the overall cost can be high since s \sim \scrO (r log r)
samples need to be drawn---this also corresponds to the number of points at which
the nonlinear function f is evaluated. In certain applications, it is desirable to pick
only r samples. To address this issue, we propose a hybrid point selection algorithm
which retains the computational advantages of sampling-based point selection but
only samples r indices, thereby retaining the favorable properties of deterministic
methods.

5.1. Randomized point selection with standard DEIM basis. We first
develop algorithms for randomized point selection with the standard DEIM basis
W \in Rn\times r. The analysis can be extended to the randomized DEIM basis and is
considered in the next subsection.

The leverage scores of W are defined to be

(5.1) \ell j \equiv \| e\top j W\| 22, j = 1, . . . , n,

where ej is the jth column of an n \times n identity matrix. Equivalently, the leverage
scores are the squared row norms ofW or , alternatively, the diagonals of the projector
PW = WW\top . The largest leverage score is known as the coherence, and the sum of
the leverage scores satisfies

\sum n
j=1 \ell j = r. Based on the leverage scores, we can define

the following discrete probability mass function (pmf) \pi j = \ell j/r for j = 1, . . . , n. In
what follows, we instead use the related pmf

(5.2) \pi \beta 
j =

\beta \ell j
r

+
(1 - \beta )
n

, j = 1, . . . , n.

Here 0 < \beta < 1 is a user-defined constant, and the modified pmf is a convex combina-
tion of the leverage score pmf and the uniform pmf. This modified pmf is beneficial
since it can handle rows with zero leverage scores.

Leverage score point selection approach. The leverage score approach constructs a
sampling matrix by selecting indices \{ t1, . . . , ts\} , independently and with replacement,
from the index set \{ 1, . . . , n\} , with probabilities given by (5.2). We construct the

selection operator S as follows: the jth column of S is etj/
\sqrt{} 
s\pi \beta 

tj for j = 1, . . . , s.

This is summarized in Algorithm 5. These columns are scaled in this manner to ensure
that SS\top equals the identity matrix In in expectation; that is, SS\top is an unbiased
estimator of the identity matrix.
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Lemma 5.1. Let W \in Rn\times r be a matrix with orthonormal columns. Let the se-
lection operator be constructed as described in Algorithm 5. Then E[SS\top ] = In.

Proof. We write SS\top as the outer product representation

SS\top =
s\sum 

j=1

Yj , Yj \equiv 
1

s\pi \beta 
tj

etje
\top 
tj .

It is easy to verify that E[Yj ] = In/s. By the linearity of expectations, it follows that
E[SS\top ] = In.

The number of selected indices s is chosen to be

(5.3) CLS \equiv 
\Bigl\lceil 2r

\beta \epsilon 2
log(r/\delta )

\Bigr\rceil 
,

where \lceil \cdot \rceil is the ceiling function. This choice will be justified in Theorem 5.2.

Input: Matrix W \in Rn\times r with orthonormal columns, number of samples
s \geq r. Probabilities \{ \pi \beta 

j \} nj=1 defined in (5.2).

Output: Matrix S \in Rn\times CLS

1 for j = 1, . . . , s do
2 Select index tj , independently and with replacement, from \{ 1, . . . , n\} 

with probabilities \{ \pi \beta 
j \} nj=1.

3 Set S(:, j) = 1\sqrt{} 
s\pi \beta 

tj

etj .

4 end

Algorithm 5: Leverage score point selection. Call as [S] =

LeverageScorePS(W, \{ \pi \beta 
j \} nj=1, s).

Hybrid point selection approach. The hybrid approach we propose has two stages:
a randomized point selection stage, which uses the leverage score distribution to select
CLS indices, and a deterministic approach, which uses the sRRQR algorithm to choose
r indices out of CLS.
1. Randomized stage. In the first stage, we use leverage score approach (Algo-

rithm 5) with s = CLS and denote the point selection matrix S1 \in Rn\times CLS .
The resulting matrix S\top 

1 W extracts CLS rows fromW , with appropriate scal-
ing.

2. Deterministic stage. In the second stage, we apply sRRQR to W\top S1 to select
exactly r rows from the matrix S\top 

1 W . Let S2 \in RCLS\times r denote the point
selection matrix obtained using sRRQR.

Denote this composite selection matrix as S = S1S2 \in Rn\times r, which consists of columns
from the n \times n identity matrix that are scaled by the appropriate factors. Similar
algorithms have been proposed in [5, 6]. However, the specific choice of the sampling
distribution and the subsequent analysis are different.

In the analysis of the DEIM approximation Lemma 2.1, the condition number
is determined by the DEIM error constant \| D\| 2. We derive bounds for this con-
stant when the selection operator is obtained using the leverage score and the hybrid
approaches.

Theorem 5.2. Let W \in Rn\times r be a fixed matrix with orthonormal columns, and
let 0 < \epsilon , \delta < 1 be user-defined parameters. Let S1 \in Rn\times CLS and S = S1S2 \in Rn\times r be
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Input: Matrix W \in Rn\times r with orthonormal columns, number of samples
CLS, parameter \eta \geq 1.

Probabilities \{ \pi \beta 
j \} nj=1 defined in (5.2).

Output: Matrices S1 \in Rn\times CLS and S2 \in RCLS\times r that define S = S1S2.
/* Stage 1. Randomized Stage */

1 [S1] = LeverageScorePS(W, \{ \pi \beta 
j \} nj=1, CLS).

/* Stage 2. Deterministic Stage */

2 Perform sRRQR with parameter \eta on W\top S1.

W\top S1

\bigl[ 
\Pi 1 \Pi 2

\bigr] 
= Q

\bigl[ 
R11 R12

\bigr] 
.

3 Set S2 = \Pi 1.

Algorithm 6: Hybrid point selection.

the outputs of Algorithms 5 and 6, with the number of samples s = CLS, and define
the corresponding DEIM operators DLS \equiv W (S\top 

1 W )\dagger S\top 
1 and DHy \equiv W (S\top W )\dagger S\top .

With probability at least 1 - \delta , the DEIM error constant for
\bullet the leverage score approach satisfies

\| DLS\| 2 \leq 

\sqrt{} 
n/CLS

(1 - \beta )(1 - \epsilon )
\equiv DLS;

\bullet the hybrid approach satisfies

\| DHy\| 2 \leq DLS

\sqrt{} 
1 + \eta 2r(CLS  - r) \equiv DHy.

For both the leverage score and the hybrid point selection approaches, the point
selection operator S contains (appropriately scaled) columns from the identity matrix.
A few differences from the standard DEIM approach are worth pointing out (assume
that D \not = 0 and D \not = In):

1. The matrix S no longer has orthonormal columns; therefore,

\| D\| 2 = \| In  - D\| 2 = \| (S\top W )\dagger S\top \| 2.

The first equality holds because D is an oblique projector; see (2.3).
2. Second, the DEIM implementation has to be altered appropriately. There

are two steps: first, the components of f(\cdot ) as determined by S are extracted,
and second, these components are scaled by the corresponding scaling factor.

3. We can combine Theorem 5.2 along with Lemma 2.1 to derive the error in the
DEIM approximation. With the assumption and notation of Theorem 5.2,
the following bounds hold with probability at least 1 - \delta :

\| f  - DLSf\| 2 \leq DLS\| (In  - PW )f\| 2, \| f  - DHyf\| 2 \leq DHy\| (In  - PW )f\| 2.

This is obtained by combining Theorem 5.2 with Lemma 2.1.

Theorem 5.2. The DEIM operators satisfy the inequalities

\| DLS\| 2 = \| W (S\top 
1 W )\dagger S\top 

1 \| 2 \leq \| (S\top 
1 W )\dagger \| 2\| S1\| 2

and
\| DHy\| 2 = \| W (S\top W )\dagger S\top \| 2 \leq \| (S\top W )\dagger \| 2\| S\| 2.

D
ow

nl
oa

de
d 

06
/2

6/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOMIZED DISCRETE EMPIRICAL INTERPOLATION METHOD A1599

Leverage scores approach. We have to find upper bounds for \| S1\| 2 and \| (S\top 
1 W )\dagger \| 2.

To bound \| (W\top S)\dagger \| 2, we first observe that

\pi \beta 
j \geq 

\beta \ell j
r
.

If we take the number of columns of S1 taken to be s = CLS, the operator S1 satisfies
the conditions of [18, Theorem 6.2]. It follows from this theorem that with probability
at least 1 - \delta 

(5.4) 1 - \epsilon \leq \sigma 2
r(S

\top 
1 W ) or \| (S\top 

1 W )\dagger \| 2 \leq 
1\surd 
1 - \epsilon 

.

We now bound \| S1\| 2. If \beta = 1, the pmf only contains contributions from the
leverage scores. The norm \| S1\| 2 may be unbounded if zero leverage scores are en-

countered. However, if \beta \not = 0, since \pi \beta 
j \geq 

1 - \beta 
n ,

(5.5) \| S1\| 2 \leq max
1\leq j\leq n

\sqrt{} 
1

CLS\pi 
\beta 
j

\leq 
\sqrt{} 

n

CLS(1 - \beta )
.

Putting this together, we get

\| DLS\| 2 \leq \| (S\top 
1 W )\dagger \| 2\| S1\| 2 \leq 

\sqrt{} 
n/CLS

(1 - \epsilon )(1 - \beta )
.

Hybrid approach. Similar to the previous part of the proof, we have to bound
\| (S\top W )\dagger \| 2 and \| S\| 2. Applying sRRQR to (W\top S1) gives

(W\top S1)
\bigl[ 
\Pi 1 \Pi 2

\bigr] 
= Q

\bigl[ 
R11 R12

\bigr] 
,

where Q \in Rr\times r is an orthogonal matrix; R11 \in Rr\times r is upper triangular; and\bigl[ 
\Pi 1 \Pi 2

\bigr] 
\in RCLS\times CLS is a permutation matrix with \Pi 1 \in RCLS\times r. Recall that

S2 = \Pi 1 and that S = S1S2. Then, the singular value bounds [15, Lemma 3.1] ensure
that

\sigma r(S
\top 
2 W )\sqrt{} 

1 + \eta 2r(CLS  - r)
\leq \sigma r(S\top W ).

Therefore,

\| (S\top W ) - 1\| 2 \leq 
\sqrt{} 
1 + \eta 2r(CLS  - r)\| (S\top 

1 W )\dagger \| 2 \leq 
\sqrt{} 

1 + \eta 2r(CLS  - r)
1 - \epsilon 

.

The bound for \| (S\top 
1 W )\dagger \| 2 follows from (5.4). To finish the proof, it remains to bound

\| S\| 2 \leq \| S1\| 2\| S2\| 2. Since S2 contains columns from the identity matrix, \| S2\| 2 = 1
and we have an upper bound for \| S1\| 2 in (5.5). Combining all the intermediate steps,
the bound for DHy then follows readily.

To shed light on the DEIM error constants, we give some representative values.
Suppose \beta = 1/2, \eta = 2, and \epsilon = 9/10, the number of samples required is

CLS \leq 5r log(r/\delta ),

and

DLS =

\sqrt{} 
20n

CLS
, DHy \leq DLS

\sqrt{} 
1 + 20r2log(r/\delta ).
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In terms of asymptotic complexity, the DEIM error constant for the leverage
score algorithm is \scrO (

\sqrt{} 
n/CLS), whereas for the hybrid algorithm it is \scrO (

\surd 
nr). This

is to be compared with the sRRQR algorithm for which the DEIM error constant
is \scrO (

\surd 
nr). In terms of computational costs, the cost of computing and sampling

the leverage scores is \scrO (nr) with an additional \scrO (r2CLS) for factorizing S
\top W . The

hybrid algorithm also requires \scrO (nr) for computing the leverage scores and sampling.
In the second stage, sRRQR is applied to a matrix of size r\times CLS; this cost is \scrO (r2CLS)
and is independent of n. An additional cost for factorizing S\top W is \scrO (r3). This is
summarized in Table 1. In summary, the hybrid approach is both computationally
efficient compared to other point selection methods and has comparable DEIM error
constants.

Table 1
Summary of various point selection techniques. Here 0 < \epsilon , \delta < 1 are user-defined parameters.

We take the parameter \beta = 1/2. For the computational cost, terms that do not depend on n are
not considered. A note about the \ast entries: the corresponding DEIM error constants each hold
independently with probability at least 1 - \delta .

Method \# indices Comp. cost DEIM error constant Reference
DEIM r \scrO (nr2) \scrO (

\surd 
nr2r) [28]

PQR r \scrO (nr2) \scrO (
\surd 
n2r) [9]

sRRQR r \scrO (nr2) \scrO (
\surd 
nr) [10]

LS\ast \scrO 
\Bigl( 

r log(r/\delta )

\epsilon 2

\Bigr) 
\scrO (nr) \scrO 

\Bigl( \sqrt{} 
n\epsilon 2

r log(r/\delta )(1 - \epsilon )

\Bigr) 
Theorem 5.2

Hybrid\ast r \scrO (nr) \scrO 
\biggl( \sqrt{} 

nr
(1 - \epsilon )

\biggr) 
Theorem 5.2

The important point is that the error constants of the hybrid point selection ap-
proach are comparable with the best known deterministic bounds (using sRRQR);
however, the computational cost is far less than that of sRRQR or the other de-
terministic approaches. We advocate the hybrid approach since it has reasonable
computational cost, is accurate, and selects exactly r indices from the nonlinear func-
tion.

5.2. Randomized point selection with randomized DEIM basis. Thus
far, we have described randomized point selection techniques assuming the availabil-
ity of the standard DEIM basisW . If the standard basisW \in Rn\times r is computationally
intensive to compute, we can alternatively use an R-DEIM basis (obtained, for exam-
ple, using Algorithm 1 or Algorithm 3). The leverage scores, and the corresponding

sampling probabilities \{ \pi \beta 
j \} nj=1, are now computed corresponding to the basis \widehat W

rather than the standard DEIM basis W . To determine the selection operator, one
may use either randomized point selection technique---Algorithm 5 or Algorithm 6.
In the following result, we quantify the error in the resulting DEIM approximation.
The main challenge is now there are two sources of randomness: the sampling matrix
\Omega as well as the sampling strategy that determines the selection operator S.

Theorem 5.3. Let \widehat W \in Rn\times r be obtained using Algorithm 3 with oversampling
parameter p \geq 2, and let \widehat S \in Rn\times r be obtained using the hybrid point selection algo-
rithm, Algorithm 6, to define the randomized DEIM operator \widehat DHy = \widehat W (\widehat S\top \widehat W )\dagger \widehat S\top .
Consider the same assumptions as in Theorem 4.4. Let 0 < \delta < 1/2 be a user-defined
parameter. With probability at least 1 - 2\delta 

\| f  - \widehat DHyf\| 2 \leq DHy

\biggl( 
\| (In  - PW )f\| 2 +

\gamma 2q+1

1 - \gamma 
Cd\| PW f\| 2

\biggr) 
,
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where DHy is as defined in Theorem 5.2 and

Cd \equiv 
e
\surd 
r + p

p+ 1

\biggl( 
2

\delta 

\biggr) 1/(p+1)
\Biggl( 
\surd 
ns  - r +

\surd 
r + p+

\sqrt{} 
2 log

2

\delta 

\Biggr) 
.

Proof. Define the event

\scrE =

\biggl\{ 
\Omega 

\bigm| \bigm| \bigm| \bigm| sin \theta max \leq 
\gamma 2q+1

1 - \gamma 
Cd

\biggr\} 
.

Combining [27, Theorems 4 and 6], the probability of the complementary event sat-
isfies P(\scrE c) \leq \delta . Similarly, define the event

\scrF =

\biggl\{ \widehat S,\Omega \bigm| \bigm| \bigm| \bigm| \| f  - DHyf\| 2 > DHy

\biggl( 
\| (In  - PW )f\| 2 +

\gamma 2q+1

1 - \gamma 
Cd\| PW f\| 2

\biggr) \biggr\} 
.

By Theorem 5.2, P(\| DHy\| 2 \leq DHy| \scrE ) \geq 1  - \delta and \sansr \sansa \sansn \sansk (DHy) = r. The assumption
1 \leq r < \sansr \sansa \sansn \sansk (A) ensures DHy \not = 0 and DHy \not = In. By Theorem 4.1, we have

P
\biggl( 
\| f  - DHyf\| 2 \leq DHy

\biggl( 
\| (In  - PW )f\| 2 +

\gamma 2q+1

1 - \gamma 
Cd\| PW f\| 2

\biggr) \bigm| \bigm| \bigm| \bigm| \scrE \biggr) \geq 1 - \delta ,

or the complementary event \scrF satisfies P(\scrF | \scrE ) \leq \delta . By the law of total probability,

P(\scrF ) =P(\scrF | \scrE )P(\scrE ) + P(\scrF | \scrE c)P(\scrE c) \leq P(\scrF | \scrE ) + P(\scrE c).

Therefore, P(\scrF ) \leq \delta + \delta = 2\delta . The complementary event satisfies the advertised
bound.

A similar result can be derived for the leverage score approach, but we omit the
details.

6. Numerical experiments. In subsection 6.1 we investigate the accuracy of
the DEIM basis generated using the randomized algorithms discussed in section 3.
In subsection 6.2 we investigate the performance of the randomized point selection
algorithms proposed in section 5. In subsection 6.3 we apply these randomized algo-
rithms to a large-scale PDE-based application. All the timing results were computed
on a computing cluster in which each node has an Intel(R) Xeon(R) CPU E5-2690
processor, with 8-core CPUs at 2.90GHz and 128GB of DDR3 RAM. The code was
implemented and tested in MATLAB 2018a, and the operating system was Ubuntu
16.04.

6.1. Example 1: Randomized range finder. In our first example, we con-
sider the setup of the synthetic example in [22, section 2.3]. The spatial domain and
the parameter domain are both taken to be \scrD s = [0, 1]2. We define the function g as

g(x1, x2;\mu 1, \mu 2) \equiv 
1\sqrt{} 

h(x1;\mu 1) + h(x2;\mu 2) + 0.12
,

where h(z;\mu ) = ((1 - z) - (0.99 \cdot \mu  - 1))2. The function that is to be interpolated is

(6.1)
f(x1, x2;\mu 1, \mu 2) = g(x1, x2;\mu 1, \mu 2) + g(1 - x1, 1 - x2; 1 - \mu 1, 1 - \mu 2)

+ g(1 - x1, x2; 1 - \mu 1, \mu 2) + g(x1, 1 - x2;\mu 1, 1 - \mu 2).

Depending on the parameter \mu , the function f has a sharp peak in one of the four
corners of \scrD s. The function is discretized on a 100\times 100 grid in \scrD s with n = 10, 000,
and parameter samples are drawn from a 25\times 25 equispaced grid in \scrD . These ns = 625
snapshots are stored in the snapshot matrix A and are used to construct the DEIM
approximation.
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Fig. 2. The dimension of the basis returned by the adaptive range finding algorithm compared
with the truncation indices based on a cutoff tolerance.

6.1.1. Adaptive range finder. If the target subspace dimension is not known
a priori, we use the adaptive procedure outlined in subsection 3.2. With the same
settings as in the previous example, we use Algorithm 2 for determining the range.
For comparison, we consider the standard DEIM basis. Given a user-defined tolerance
\epsilon > 0, the dimension of the standard DEIM basis W (assuming n \not = ns) is taken to
be

r\epsilon (A) = min

\Biggl\{ 
r

\bigm| \bigm| \bigm| \bigm| \bigm| 
ns\sum 

k=r+1

\sigma 2
k(A) > \epsilon 

ns\sum 
k=1

\sigma 2
k(A)

\Biggr\} 
,

since this ensures that W satisfies

\| (In  - WW\top )A\| 2F \leq \epsilon \| A\| 2F .

Note that we say ``the dimension of a basis"" even though dimension is an attribute of
the subspace spanned by the basis vectors.

The standard DEIM basis has the smallest dimension satisfying the above equal-
ity; this follows from the optimality of the SVD. Therefore, the dimension of the basis
returned by Algorithm 2 must be at least as large as the dimension of the standard
DEIM basis. In this experiment, we investigate how close these two dimensions are.
The tolerance \epsilon is varied as \epsilon \in \{ 102, . . . , 10 - 6\} . For the adaptive algorithm, the
block size was set to be 10, and the maximum number of iterations was taken to be
40. In Figure 2, we compare the two dimensions depending on the cutoff tolerance \epsilon .
From the figure, it is clear that as the tolerance \epsilon decreases, both dimensions increase.
Second, it can be seen that both dimensions are in good agreement, and the dimen-
sion returned by the adaptive randomized algorithm is only slightly larger than r\epsilon ,
demonstrating that it can be used in real applications. The accuracy of the R-DEIM
basis is further investigated in subsection 6.1.3.

6.1.2. Subspace iterations \bfitq and oversampling parameter \bfitp . In our next
experiment, we investigate the effects of the number of subspace iterations q and the
oversampling parameter p. Theorem 4.4 guarantees that with increasing iterations
q the factor \gamma 2q+1 subdues the influence of the constant C, since \gamma is assumed to
be less than 1. Similarly, note that the oversampling parameter p appears in the
denominator of C; therefore, increasing the oversampling parameter p results in more
accurate subspace computation. Both [14, 16] recommend choosing p = 10 - 20. We

D
ow

nl
oa

de
d 

06
/2

6/
20

 to
 1

52
.1

4.
13

6.
96

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOMIZED DISCRETE EMPIRICAL INTERPOLATION METHOD A1603

found this choice of parameters to be satisfactory in our experiments, and Figure 3
confirms these findings.

5 10 15 20 25

Oversampling parameter
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Effect of oversampling parameter with q = 0
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Fig. 3. Example 1: Effect of (left) increasing oversampling parameter p \in \{ 5, 10, 15, 20, 25\} (we
fix q = 0) and (right) increasing subspace iterations q \in \{ 0, 1, 2, 3, 4\} (we fix p = 20) on the accuracy
of the R-DEIM basis measured as sin \theta max = \| PW  - P\widehat W \| 2.
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Fig. 4. Example 1: (Left) Relative error using the DEIM and the R-DEIM approximation
plotted against basis dimension r. R-DEIM basis was computed using Algorithm 1 with r = 30 and
oversampling parameter p = 10. (Right) Timing results using DEIM and R-DEIM plotted against
basis dimension r.

6.1.3. Accuracy of the R-DEIM basis. In this experiment, we compare the
accuracy of the R-DEIM basis with that of the standard DEIM basis for Example
1. For the R-DEIM approximation, we use an oversampling parameter p = 10. The
dimension of the R-DEIM basis is varied until r = 30, and the error is compared with
the standard DEIM approximation. We used the PQR algorithm for point selection.
To account for the randomness, the resulting error in the R-DEIM approximation
was averaged over 100 runs. As can be seen from Figure 4, the error in the R-DEIM
approximation is comparable to the error in the standard DEIM approximation. We
also see that the time for computing the R-DEIM approximation is far lower than the
time for the DEIM approximation.

6.2. Example 2: Point selection. This example is a continuation of Example
1, but we now focus on the randomized point selection. For this example, we use the
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A1604 ARVIND K. SAIBABA

standard DEIM basis, i.e., the basis computed using the left-singular vectors of the
snapshot matrix A.

We first compare the two randomized point selection techniques---leverage scores
(LS), and the hybrid point selection algorithms---with the PQR algorithm. Recall
that theory suggests that we have to choose the number of samples according to the
formula in Theorem 5.2. Suppose we choose the parameters \epsilon = 0.99, which ensures
1/
\surd 
1 - \epsilon = 10 and \delta = 0.01. Our numerical experiments showed that the number of

samples required by the LS point selection algorithm appear to be an overestimate.
In fact, the number of samples can sometimes exceed n---which is antithetical to the
spirit of the DEIM approximation. In practice, we found \lceil 3r log r\rceil samples sufficient
to provide accurate approximations. We used the same number of samples for the
hybrid point selection algorithm.

0 5 10 15 20 25 30
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Fig. 5. Example 2: (Top left) Error in the DEIM approximation, (top right) the DEIM error
constants \| D\| 2 using the PQR algorithm and the hybrid approach Algorithm 6, and (bottom) the
computational time for all the point selection methods.

In Figure 5, we compare the error in the DEIM approximations and the corre-
sponding error constants \| D\| 2 for the various algorithms. The error constant is much
smaller for the LS point selection algorithm compared to both the hybrid and deter-
ministic approaches. This is because the number of samples in the LS point selection
algorithm is much larger than r. However, the accuracy of the DEIM approximation
is comparable for all three methods and does not appear to be significantly affected
by the choice of the point selection method. The computational time for each point
selection method is also reported; the timings were averaged over 10 runs.
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Fig. 6. Example 2: The indices chosen by the various point selection methods.

To provide more insight into the hybrid point selection algorithm, we compare it
with the sRRQR and LS point selection algorithms. In Figure 6, we plot the point
selected by the LS sampling approach in the left panel. By construction, the hybrid
approach subsamples from the points selected by the LS algorithm, and these points
are overlaid in the figure. In the right panel of the same figure, the hybrid points
are compared with those selected by sRRQR. It is interesting to note that several
points overlap between the hybrid and the sRRQR approaches, even though they
were selected using different algorithms.

Our conclusion is that the proposed hybrid point selection algorithm is a good
compromise between the deterministic (e.g., PQR, sRRQR) and randomized point
selection algorithms. Compared to the deterministic algorithms, it is computationally
efficient and has comparable accuracy. The hybrid point selection algorithm also has
comparable accuracy to the LS algorithm but is advantageous since only r components
of the nonlinear function need to be evaluated.

6.3. Example 3: PDE-based application. We consider an example from [25,
section 8.4] involving a parameterized advection-diffusion PDE that models, for ex-
ample, the evolution of the concentration of a pollutant. Consider the following PDE
defined on a domain \scrD = [0, 1]2 with boundary \partial \scrD :

 - \mu 1\Delta u+ \bfitb (\mu 2) \cdot \nabla u+ a0u =s(x;\bfitmu ), x \in \scrD ,(6.2)

\mu 1n \cdot \nabla u = 0, x \in \partial \scrD .(6.3)

Here, \bfitmu =
\bigl[ 
\mu 1 . . . \mu 5

\bigr] 
, a0 is a positive constant, and n is the normal vector. The

wind velocity is taken to be \bfitb (\mu 2) = [cos\mu 2, sin\mu 2], which is a constant in space but
depends nonlinearly on the parameter \mu 2. The source term s(\bfitmu ) has the form of a
Gaussian function centered at (\mu 3, \mu 4) and spread \mu 5, i.e.,

s(x;\bfitmu ) = exp

\biggl( 
 - (x1  - \mu 3)

2 + (x2  - \mu 4)
2

\mu 2
5

\biggr) 
.

The cost of solving the PDE for many different values of \bfitmu is high, and therefore, it
is computationally beneficial to develop a reduced order model (ROM) that makes
the online solution of the PDE feasible. The nonlinear dependence on the parameters
arises from the source term s(x;\bfitmu ). To tackle this, we use the POD-DEIM approach.
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Fig. 7. (Left) The error in the DEIM and R-DEIM approximation for the source term s(x;\bfitmu ).
The R-DEIM basis was constructed using Algorithm 1; the oversampling parameter was p = 20.
We used the hybrid algorithm for the point selection. (Right) The error in the DEIM and R-DEIM
approximation for the PDE.

Our first experiment is similar to that in [25, section 10.5.1]. We first consider
the cost of approximating the source term s(x;\bfitmu ) over the range of parameters \mu 3 \in 
[0.2, 0.8], \mu 4 \in [0.15, 0.35], and \mu 5 is chosen between [0.1, 0.35]. A training set for
\bfitmu is generated by Latin hypercube sampling with ns = 1000 training points. Two
different approximations are generated using DEIM and R-DEIM. The number of
DEIM basis vectors used was r = 24 and was determined based on the singular value
decay of the snapshot matrix. The R-DEIM basis is also fixed to be of size r = 24
and was computed using Algorithm 1 with an oversampling parameter p = 20. The
error is computed by averaging over 200 different randomly generated test points.
The results are displayed in Figure 7. The hybrid point selection algorithm is used for
both the standard DEIM basis and the randomized DEIM basis---the parameters used
are the same as those in subsection 6.2. As can be seen, the error of the two different
methods is comparable. For this application, the number of quadrature nodes is
165, 888. It is worth mentioning that the CPU time for computing the compact SVD
is 7.67 seconds, whereas the CPU time for the randomized range finder is 0.25 seconds.
The computational time for the point selection was comparatively 0.06 seconds. The
speedup is more impressive for larger problems; see [2] for more detailed comparisons
on large-scale problems.

Our second experiment is similar to [25, section 10.5.2], in which the parameters
\mu 1 = 0.03 and \mu 5 = 0.25 are fixed and the remaining parameters are taken to be in the
range \mu 2 \in [0, 2\pi ], \mu 3 \in [0.2, 0.8], and \mu 4 \in [0.15, 0.35]. The goal is then to compute a
ROM for solving the PDE (6.1) for the above chosen range of parameters. The source
term is approximated using the DEIM and the R-DEIM approaches, as described in
the previous experiment (the dimension r = 24 was used for both approximations).
The POD algorithm is computed using 1000 snapshots, and the POD dimension
k = 20 is used to construct the reduced basis space. The error is shown in the right
panel of Figure 7, where the POD-R-DEIM approximation is compared against the
POD-DEIM approximation. It is seen that the errors are comparable, which validates
our approach.

7. Conclusions. We have provided randomized algorithms for tackling the two
main bottlenecks of the standard DEIM algorithm. First, we proposed several ran-
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domized algorithms for approximately computing the DEIM basis and highlighted
various benefits of the randomized algorithms including adaptivity. Second, we pro-
posed two randomized point selection algorithms; one is based on leverage score sam-
pling, and the other combines leverage score and rank-revealing factorizations. We
provided detailed analysis of the error in the resulting algorithms that clearly shows
the trade-off between computational cost and accuracy. The proposed algorithms are
more efficient than the standard techniques and have comparable accuracy. Numeri-
cal experiments in section 6 confirm these findings and give insight into the choice of
parameters.

Acknowledgments. The author would like to thank Ilse C. F. Ipsen and Zlatko
Drma\v c for discussions and Ivy Huang for her help with this paper.
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